(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
selects(x', revprefix, Cons(x, xs)) → Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
select(Cons(x, xs)) → selects(x, Nil, xs)
revapp(Cons(x, xs), rest) → revapp(xs, Cons(x, rest))
selects(x, revprefix, Nil) → Cons(Cons(x, revapp(revprefix, Nil)), Nil)
select(Nil) → Nil
revapp(Nil, rest) → rest
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
selects(x', revprefix, Cons(x, xs)) →+ Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [xs / Cons(x, xs)].
The result substitution is [x' / x, revprefix / Cons(x', revprefix)].
(2) BOUNDS(n^1, INF)